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BIOMARKERS OF FUTURE FREQUENT (2+/YEAR) SEVERE EXACERBATIONS
OF POORLY CONTROLLED ASTHMA IN THE AMAZES TRIAL
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A sputum 6 gene signature predicts future exacerbations of poorly controlled asthma.
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Abstract:

Background: Improved diagnostic tools for predicting future exacerbation frequency
in asthma are required. A sputum gene expression signature of 6 biomarkers (6GS -
including CLC, CPA3, DNASE1L3, ALPL, CXCR2, IL1B) predicts inflammatory and
treatment response phenotypes in stable asthma. We recently demonstrated that
azithromycin (AZM) add-on treatment in uncontrolled moderate-to-severe asthma
significantly reduced asthma exacerbations (AMAZES clinical trial).

Objectives: To test whether the 6GS predicts future exacerbation and inflammatory
phenotypes in a subpopulation of AMAZES. To test the impact of AZM therapy on
6GS expression and prognostic capacity.

Methods: 142 patients (73 placebo-treated, 69 AZM-treated) had sputum stored for
qPCR of 6GS markers at baseline and after 48 weeks of treatment. Logistic
regression, ROC and AUC were performed on baseline measures, and in an
exploratory analysis the predictive value of 6GS was compared with conventional
biomarkers for exacerbation and inflammatory phenotypes.

Results: The 6GS significantly predicted all future exacerbation phenotypes tested.
Calculated AUCs for 6GS were significantly higher than AUCs for peripheral blood
eosinophil counts, sputum neutrophil counts and combined sputum eosinophils and
neutrophil counts. 6GS AUCs were also were numerically, but not significantly,
higher than FeNO and sputum eosinophil counts. AZM treatment neither altered the
6GS expression nor the predictive capacity of the 6GS for future exacerbation
phenotypes. The 6GS was a significant predictor of airway inflammatory phenotype
in this population.

Conclusion: We demonstrate that a sputum gene signature can predict future
exacerbation phenotypes of asthma, with greatest biomarker performance in

identifying those who would experience frequent severe exacerbations. AZM therapy
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did not modify 6GS expression or biomarker performance, suggesting the therapeutic

action of AZM is independent of 6GS-related inflammatory pathways.

Key Messages
e Sputum gene signatures may offer a superior means to predict future exacerbations of
asthma compared to conventional biomarkers.
e QOur data suggest a therapeutic mechanism of AZM which is independent of

inflammatory factors associated with the 6GS (airway eosinophilia, neutrophilia, mast

cells).

Capsule Summary:
In this AMAZES RCT sub-analysis, the sputum 6GS predicts exacerbation and airway
inflammatory phenotype of uncontrolled, moderate-to-severe asthma. Azithromycin appears

to exert a therapeutic effect independently of 6GS-related airway inflammatory factors.

Key words: Asthma, sputum, biomarker, inflammation, exacerbation, macrolide,

azithromycin, eosinophil, gene signature, clinical trial

Abbreviations:

6GS 6 gene signature

ACQ Asthma control questionnaire-6

ALPL Alkaline Phosphatase, liver/bone/kidney
AUC Area under curve

AZM Azithromycin

CLC Charcot-Leyden Crystal Galectin



128 CPA3 Carboxypeptidase 3
129 CXCR2 C-X-C motif chemokine receptor 2

130 DNASEI1L3 Deoxyribonuclease 1 like 3

131 EA Eosinophilic asthma

132 FENO Fractional exhaled nitric oxide
133 ICS Inhaled corticosteroid

134 IL1B Interleukin-103

135 MGA Mixed granulocytic asthma
136 NA Neutrophilic asthma

137 NEA Non-eosinophilic asthma

138 NNA Non-neutrophilic asthma

139 NPGA Non-paucigranulocytic asthma
140 OCS Oral corticosteroid

141 PBE Peripheral blood eosinophil
142 PGA Paucigranulocytic asthma

143 RCT Randomized controlled trial
144  ROC Receiver operating characteristic
145
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Introduction

Asthma is a chronic respiratory disease characterized by variable or reversible airflow
obstruction, often featuring airway inflammation. Analysis of induced sputum, through
quantification of relative abundance of eosinophils and neutrophils, allows classification of
asthma into inflammatory phenotypes'~. Airway inflammometry can help guide the choice of
conventional and emerging treatments for asthma patients™ . Eosinophilic airway
inflammation, in contrast to neutrophilic inflammation, is corticosteroid sensitive, and
tailoring of inhaled corticosteroid (ICS) therapy guided by sputum eosinophil quantification

showed greater benefit in clinical trials compared to conventional management®®

Sputum induction, processing and analysis is technically demanding and therefore limited to
specialist clinical research laboratories. Thus, recent research has centered on identification
of biomarkers of airway inflammation which can be easily accessed and measured. Peripheral
blood eosinophils (PBE) and fractional exhaled nitric oxide (FENO) have demonstrated some
value as biomarkers for selection of patients responsive to novel biological therapies
targeting type-2 inflammation®, but at best show modest correlation with airway
inflammatory phenotype and have not proved accurate in predicting responsiveness to

corticosteroids. Therefore improved biomarkers are needed.

Recent transcriptomic and proteomic studies have extended the assessment of sputum

inflammation’ 2

. We previously reported a sputum gene expression signature comprised of 6
transcripts (CLC, CPA3, DNASE1L3, ALPL, CXCR2, IL1B) which distinguished airway
inflammatory phenotypes of asthma with high specificity and sensitivity">. CLC, CPA3 and

DNASEIL3 expression are increased in eosinophilic asthma. ALPL, CXCR2 and IL1B are
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increased in neutrophilic asthma and mark innate inflammatory signaling pathways relating
to TNFo, CXCL1 and IL-1 respectively. This 6 gene signature (6GS) also predicts
responsiveness to inhaled'® and oral corticosteroids (OCS)'*, which suppress CLC, CPA3 and
DNASE1L3 expression. The development of sputum gene signatures may increase the
feasibility of use of sputum-based measures in the clinic, as the sample processing (RNA

extraction, cDNA synthesis, qPCR) can be automated, and the markers have high specificity.

We recently published findings from a clinical trial (AMAZES) which demonstrated that
treatment of moderate-to-severe, uncontrolled asthma with the macrolide AZM reduced
exacerbation frequency and improved quality of life over a 48-week period". In this study,
none of the inflammatory or clinical features examined at baseline identified an AZM-
responsive subpopulation. The mechanism of action whereby AZM reduces asthma
exacerbations remains unclear, and could be related to its anti-inflammatory, anti-bacterial or

anti-viral properties.

In the present study, we evaluate the ability of the sputum 6GS to predict asthma
exacerbation frequency and to differentiate airway inflammatory phenotype in a
subpopulation of the AMAZES trial. The effect of AZM treatment on 6GS expression and
prognostic potential was tested. The prognostic potential of the 6GS was compared to sputum
cell count, PBE and FENO. We hypothesized that the 6GS would provide superior

prediction of exacerbation and inflammatory phenotype compared to other biomarkers.
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Methods

The AMAZES study" was a double-blind placebo-controlled trial where 420 adults with
persistent symptomatic asthma despite current use of ICS and long-acting bronchodilator
were randomized to receive AZM 500mg 3 times per week or identical placebo for 48 weeks
(Online Repository). Induced sputum was collected prior to randomization and at 48 weeks.
Asthma exacerbations were recorded as the primary study outcome'’. The trial was approved

by institutional ethics committees. All patients provided written informed consent.

Clinical methods

We performed the present analysis on a subset of AMAZES study participants'® who were
included if sputum was available for differential cell count and qPCR analysis from both the
baseline and 48-week visits. Sputum induction and analysis was performed using our
previously described methods (see Online Repository). Inflammatory phenotypes were
defined as follows: eosinophilic asthma (EA, sputum eosinophils > 3%’); neutrophilic asthma
(NA, sputum neutrophils > 61%"); mixed granulocytic asthma (MGA, sputum neutrophils >
61% and eosinophils > 3%); paucigranulocytic asthma (PGA, sputum neutrophils < 61% and
eosinophils <3%). In the AMAZES trial exacerbation occurrence and type (severe or
moderate) were determined by structured interview. Decisions regarding treatment of trial
participants during exacerbation were determined by the treating physicians, and were not
part of the trial. Severe exacerbations were defined as a worsening of asthma symptoms
requiring >3 days of systemic corticosteroid treatment >10mg/day, or an asthma-specific
hospitalization or emergency department visit requiring systemic corticosteroids. Moderate
exacerbations were defined as any temporary increase in ICS or antibiotics in conjunction

with a deterioration in asthma symptoms or both (change in ACQ6 of at least 0.5 or increased
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diary symptom score), or any increase in 3, agonist use for at least 2 days, or an emergency

department visit not requiring systemic corticosteroids.

Gene expression analysis

Sputum gene expression of CLC, CPA3, DNASEIL3, ALPL, CXCR2, IL1B was quantified as
previously described’ (see Online Repository). Statistical analysis of diagnostic ability was
performed on the change in cycle threshold (ACt) between the target gene and housekeeping

B-actin. For relative gene expression levels, data were log transformed (2.

Statistical analysis

The risk of being an exacerbator, as opposed to a non-exacerbator, was modelled by logistic
regression (STATA 13, StataCorp, College Station, Texas, USA) using single (univariate) or
a combination of markers (multiple logistic regression). Several alternative binary definitions
of exacerbator status were used for the dependent variable according to both the frequency
and the severity of exacerbations. These included one or more vs none (any exacerbations)
and two or more vs one or none (frequent exacerbations), where exacerbations included all
exacerbations (total moderate and severe) or were limited to severe exacerbations'. To
examine the potential effect of AZM treatment on the relationship between 6GS and future
exacerbation, each model was adjusted for AZM treatment and conducted with and without
interaction terms for treatment and the individual gene expression. The models with and
without the interaction terms were then compared using a log likelihood ratio test and, if non-

significant, p>0.05, the models with no interaction terms were used.

For each exacerbator status outcome and predictor set, each member of the study population
was assigned a predicted value for the 6GS which was generated by input of the 6 genes as

individual variables in a multiple logistic model according to exacerbator status outcome.

10
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Similarly, each member of the study population was assigned a predicted value for the other

biomarkers tested by the logistic model adjusted for AZM treatment.

Receiver Operating Characteristic (ROC) curves were generated of the 6GS and other
biomarker predicted values by exacerbator (outcome) status for each exacerbation model.
Area under the curve (AUC) was estimated for each model as an indicator of the predictive

accuracy of that model.

In an exploratory analysis, ROC curves for the 6GS were compared with traditional
biomarker ROC curves including sputum eosinophil %, PBE and FENO. The predictive
capacity of the 6GS (with and without adjustment for prior history of OCS use) and prior
history of OCS use alone for severe exacerbations were also compared. Significance was

accepted when p<0.05.

Similar logistic or multiple logistic regression with ROC curve analysis was performed to test

the ability of the 6GS, PBE and FENO to predict airway inflammatory phenotype at baseline.

For analysis of qPCR data, Mann-Whitney was used for comparison between inflammatory
subtypes and comparison at visit 10 between treatments. For comparison of baseline to visit

10 data within each treatment group Wilcoxon paired test was performed.

11
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Results

Subject Characteristics

Most patients were classified as GINA step 4 (85.9%) and 48.6% as having severe asthma
(ERS/ATS guidelines)'® and all had persistent symptomatic (ACQ6 > 0.75) asthma despite
ongoing treatment'>. Major clinical and inflammatory characteristics were similar between
participants randomized to the placebo and AZM arms of the trial, including age, gender,
asthma control, asthma severity, spirometry and systemic and airway inflammatory measures
(table I). Of note, the primary outcome of reduced exacerbations in AZM-treated patients
previously reported in the whole AMAZES cohort was recapitulated in this subpopulation

(table I).

The 6GS is significantly associated with future exacerbations, independently of AZM
treatment status

We first examined the relationship between 6GS measurement at baseline and exacerbations
subsequently recorded during the 48-week AMAZES trial (moderate and severe or severe
only). There was no significant interaction between AZM treatment and the relationship
between 6GS and future exacerbations and no significant difference between the models with
or without interaction terms. A significant association was observed between the combined
6GS components and future moderate and severe exacerbations (model P = 0.036) and future

frequent severe exacerbations (model P = 0.022).

The 6GS outperforms traditional biomarkers as a prognostic test for future
exacerbation phenotypes
In a series of exploratory analyses, we performed logistic regression with ROC analysis using

the 6GS, sputum eosinophils and/or neutrophils, PBE and FENO quantified at baseline to

12



285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

evaluate their relative prognostic value for various exacerbation phenotypes based on
exacerbations recorded during the trial period. As there was no interaction between AZM
treatment and the association of 6GS with future exacerbations, we combined placebo and

AZM-treated patients in our initial analysis.

Sputum eosinophils, sputum neutrophils, PBE and FENO did not provide statistically
significant discriminatory capacity for those patients that experienced at least one severe
exacerbation (exacerbators) during the trial from those that experienced none (non-
exacerbators) (figure 1A and table II). In contrast the sputum 6GS provided modest but
significant prediction of severe exacerbators vs non-exacerbators (AUC = 68.1%, P <0.0001)

(table II and supplemental table E1).

Sputum eosinophils, eosinophils and neutrophils combined and the 6GS provided significant
discriminatory capacity of patients who experienced frequent (= 2) vs infrequent (< 2) severe
exacerbations (6GS AUC = 76.1%, P < 0.0001; sputum eosinophil AUC = 70.3%, P =0.002;
sputum eosinophils and neutrophils AUC = 68.4%, P = 0.012) (figure 1B and table II). In the
subset of patients where FENO was measured, both 6GS and FENO provided significant
prognostic capacity (6GS AUC = 83.7%, P <0.0001; FENO AUC = 75.6%, P <0.0001). Of
all biomarkers examined, the sputum 6GS gave the highest AUC values and significantly
outperformed sputum neutrophils, eosinophils and neutrophils combined and PBE in

predicting the frequent severe exacerbation phenotype (table II and supplemental table E2).

In the AMAZES study moderate exacerbations were also quantified". We performed logistic

regression analysis comparing exacerbator vs non-exacerbator and frequent vs infrequent

exacerbator phenotypes for total (sum of moderate and severe) exacerbations. The 6GS and

13
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sputum eosinophils and/or neutrophils significantly predicted exacerbators vs non-
exacerbators (total) (6GS AUC = 69.6%, P <0.0001; eosinophils AUC = 63%, P = 0.008;
neutrophils AUC = 63.3%, P = 0.005; eosinophils and neutrophils AUC = 64.2%, P = 0.003)
(figure 1C, table I, supplemental table E3). In this analysis 6GS statistically outperformed
sputum neutrophils and PBE. The 6GS and sputum eosinophils and/or neutrophils
significantly discriminated frequent (= 2) total exacerbators from infrequent exacerbators
(6GS AUC = 66.4%, P =0.001; eosinophils AUC = 60.6%, P = 0.034; neutrophils AUC =
60.8%, P = 0.029; eosinophils and neutrophils AUC = 62.1%, P = 0.016) (figure 1D, table II,

supplemental table E4), and the 6GS significantly outperformed PBE.

History of OCS use for the 12-month period prior to the study baseline visit was recorded.
Prior OCS history alone could significantly predict the future severe exacerbation frequency
with a similar AUC to the 6GS (Prior OCS use AUC = 76.5%, p < 0.0001). When 6GS was
evaluated and the data adjusted for prior OCS history, the highest AUC for predicting the
severe exacerbation phenotype was achieved (6GS adjusted for prior OCS use AUC = 79.8%,

p <0.0001) (figure 1E).

AZM treatment does not alter 6GS expression nor prediction of future exacerbation
status

We evaluated the effect of 48 weeks AZM treatment on 6GS transcript expression. At visit
10 (48 weeks of treatment), there was no significant difference in 6GS expression between
placebo and AZM treatment groups (figure 2, A-F). CXCR2 mRNA was significantly
increased at visit 10 vs baseline visits in both placebo and AZM-treated patients (figure 2, E).
In a further exploratory sub-analysis, we examined biomarker performance for the various

exacerbator phenotypes, analyzing placebo- and AZM-treated groups separately. Of note,

14



335 6GS retained statistically significant predictive capacity for all exacerbation phenotypes
336 examined in both placebo and AZM-treated groups, with the exception of prediction of

337 frequent exacerbators (total) in the AZM-treated patients (AUC = 62.7%, P = 0.097) (figure
338 2, G-J, supplemental tables ES-9). Other biomarkers did not provide significant predictive
339 capacity for any exacerbator phenotype in either placebo or AZM-treated groups, with the
340 exception of sputum eosinophils for predicting frequent severe exacerbators in the placebo
341 group (AUC =70.1%, P =0.004) (supplemental table ES).

342

343 6GS predicts airway inflammatory phenotype in a population with uncontrolled

344 moderate-to-severe asthma

345 Airway expression of CLC, CPA3 and DNASE 113 were significantly elevated in eosinophilic
346 (EA; = 3% sputum eosinophils) vs non-eosinophilic (NEA; < 3% sputum eosinophils)

347 asthma, whilst /Z/B was lower in EA (figure 3A). CXCR2 and ALPL expression did not
348 differ between EA and NEA. IL1B, CXCR2 and ALPL were significantly elevated in

349 neutrophilic (NA) vs non-neutrophilic (NNA) asthma, whilst expression of CLC, CPA3 and
350 DNASE1L3 showed no significant differences between these groups (figure 3B).

351

352 We tested whether the 6GS measured at baseline could predict airway inflammatory

353 phenotype, using multiple logistic regression and ROC curve analysis. In all analyses, the
354 sputum 6GS discriminated airway inflammatory phenotypes to a statistically significant
355 extent (EA vs NEA: AUC =76.8%, P <0.0001; EA vs NA: AUC =92.9%, P <0.0001; EA
356 vs PGA: AUC =76.4%, P <0.0001; NA vs NNA: AUC =89.5%, P <0.0001; NA vs PGA:
357  AUC =88.0%, P < 0.0001; PGA vs NPGA: AUC = 74.0%, P < 0.0001) (table III). We also
358 examined two established biomarkers of type 2/eosinophilic inflammation in asthma, PBE

359 and FENO, and compared their performance with the 6GS in distinguishing sputum

15
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364

inflammatory phenotypes. Both PBE and FENO discriminated EA vs NEA, EA vs NA and
EA vs PGA to a statistically significant extent (supplemental table E10). However, the 6GS
significantly outperformed PBE (figure 3C) and FENO (figure 3D) as a diagnostic test for

predicting EA vs NA.
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365 Discussion

366 In this study, we demonstrate that the sputum 6GS can predict future exacerbation phenotype
367  in a cohort of patients with uncontrolled, moderate-to-severe asthma. Furthermore we find
368  that AZM did not alter 6GS expression relative to placebo, and that the 6GS retains its

369  prognostic utility even in patients whom were treated with AZM add-on therapy, which

370  reduced overall rate of exacerbations compared to the placebo treatment. The sputum 6GS
371 had statistically better predictive capacity for future frequent severe exacerbations than PBE,
372 sputum neutrophils and combined sputum eosinophil and neutrophil count. Numerically, but
373 not statistically, superior AUC values were also observed for 6GS compared to sputum

374  eosinophils and FENO in the prediction of future exacerbation phenotypes.

375

376  Sputum 6GS predicts future exacerbations more effectively than conventional

377  biomarkers

378 Development of biomarkers that can identify asthma patients most likely to experience

379  frequent exacerbations would be useful to target treatment for this at-risk population. At

380 present the best indicator of future exacerbation probability is past exacerbation frequency'”
381 '® however this does not assist in selecting treatment options. Patients with elevated
382  eosinophilic or type 2 inflammatory biomarkers including sputum eosinophils, PBE and

. : 19-22
383  FENO experience more frequent severe exacerbations

. In the present study, using ROC
384  analysis to evaluate biomarker potential, we demonstrate that the sputum 6GS can

385  discriminate future exacerbators from non-exacerbators and frequent from non-frequent
386 exacerbators, when either severe exacerbations or total exacerbations were modeled. In all
387  but one ROC analyses performed, the sputum 6GS generated higher AUC values than

388 conventional biomarkers. Performance of conventional biomarkers was inconsistent, and in

389  exploratory comparative analysis the 6GS frequently statistically outperformed sputum

17
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neutrophils and PBE. The sputum 6GS matched past courses of OCS as a predictor of
frequent severe exacerbations over the following 48 weeks. The ability of the 6GS to identify
patients who would go on to experience frequent severe exacerbations was further enhanced
when we adjusted for prior OCS courses, giving an AUC value of 80%, which corresponds to
a good performance as a prognostic tool. To our knowledge this is the best such score
reported for the identification of patients who would go on to experience frequent severe
exacerbations over the following year. Of note, the 6GS was initially developed as an
inflammatory phenotyping tool"’, thus whilst these results demonstrate the promise of sputum
gene signatures to identify patients most at risk of exacerbation, improved biomarker

performance may be achieved in the future through further gene signature optimization.

Why might the sputum 6GS outperform conventional inflammatory biomarkers as a
prognostic tool in this instance? One possibility is that the 6GS reports on multiple
inflammatory variables that impact on asthma exacerbation frequency, as opposed to a single
variable in isolation. For example, although sputum neutrophil count in this study was a poor
prognostic marker for future exacerbation status, high sputum neutrophil count has been
linked to more severe forms of asthma in cluster analysis, associated with higher healthcare
burden and hospitalization, particularly when accompanied by elevated sputum eosinophils®.
Combinatorial use of biomarkers reporting on distinct disease endotypes or markers could
improve prognostic potential. In agreement with this hypothesis, combinatorial use of type 2-
related biomarkers FENO, PBE and serum periostin improves prediction of exacerbation risk
when compared to each variable in isolation®*. The individual gene markers within the 6GS
combine information about the eosinophilic and neutrophilic inflammatory status of the
airways. However, in our study combinatorial use of sputum eosinophil and neutrophil

proportions provided little or no improvement compared to each variable in isolation.
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The 6GS may provide information relating to airway inflammatory status beyond merely
relating to the cellular composition of the sputum sample. We have shown previously that

25,26. It

airway /L 1B expression is elevated in frequent exacerbators in both COPD and asthma
is also possible that the 6GS improves on sputum eosinophil and neutrophil count in
prognostic tests because it reflects cellular inflammation or processes not reported in
conventional sputum analysis. CPA3 encodes a carboxypeptidase expressed exclusively in
mast cells in humans'""*”?®*. Our and others’ sputum transcriptomic analyses identified a
number of mast cell-related genes that were upregulated in eosinophilic asthma” ' '". A
recent study reported flow cytometry-based quantification of sputum mast cells and
demonstrated positive correlation with sputum eosinophil count®. Of the 6GS genes, CPA3
and CLC were the most effective at predicting the frequent severe exacerbator phenotype
(supplemental table E2). CLC may be expressed in both eosinophils and basophils, which are

. 29, 30
correlated in sputum samples™

. Thus, the potential of the sputum 6GS to provide
information relating to mast cell and basophil-related inflammation in addition to eosinophils

and neutrophils may explain its superior performance as a predictor of exacerbation

phenotype.

AZM add-on treatment does not modify sputum 6GS expression or prognostic capacity
despite significantly reducing exacerbation rate.

In the primary analysis of the AMAZES trial, we demonstrated that AZM add-on therapy in
uncontrolled moderate-to-severe asthma reduced asthma exacerbations by approximately
40% and improved asthma related quality of life scores'”. In our initial analysis we were
unable to identify asthma related variables (clinical, inflammatory or microbiological) that
predicted AZM response'’. AZM treatment did not alter most systemic and airway

inflammatory variables measured, with the exception being a significant reduction in the
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absolute number (but not proportion) of sputum eosinophils. Macrolides including AZM
exert anti-bacterial, anti-viral and anti-inflammatory effects, all of which could explain the
reduction in asthma exacerbations observed®"*2. Our present analysis concludes that AZM
add-on treatment did not significantly affect expression of the sputum 6GS genes. However,
the lack of effect of AZM on sputum 6GS expression is in agreement with the prior analysis
that AZM did not affect sputum or systemic inflammatory biomarkers. Consistent with this,
we also found that the sputum 6GS could significantly predict future exacerbation
phenotypes in most analyses conducted in AZM-treated patients, despite the fact that
exacerbation rate was significantly reduced by AZM treatment. The implications of our
findings are that the mechanism of action whereby AZM treatment reduces exacerbation rate
is discrete from the inflammatory pathways reflected by the sputum 6GS, including sputum

eosinophils, neutrophils and mast cells.

Sputum 6GS is a useful tool for discriminating asthma inflammatory phenotypes in
moderate-to-severe asthma

The findings of the present study further consolidate and broaden the potential use of 6GS as
an inflammatory phenotyping tool in asthma. Here we demonstrate for the first time that the
6GS is effective as a diagnostic predictor of inflammatory phenotype in a cohort of patients
with uncontrolled moderate-to-severe asthma. These results add to our prior work assessing
the utility of the sputum 6GS in stable, mild-to-moderate asthma'® and as a predictor of

S Thus, we establish that the sputum 6GS provides

positive response to ICS and OC
excellent airway inflammatory phenotyping capacity across all asthma severities.
This study does have limitations. This was a secondary analysis of our previously published

AMAZES RCT". Our comparative analysis of biomarkers was exploratory, and further

validation of the 6GS as a prognostic tool for future exacerbation phenotypes would require

20



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

prospective recruitment of patients in a study designed to address this specific question.
Notably, due to the requirement of sufficient sputum sample to allow RNA isolation and
qPCR analysis for our present study, only those patients that produced sufficient sputum were
included, and this could be a source of biological bias. In this sub-population of the
AMAZES RCT, FENO data was not available for all patients, and thus our analysis of FENO
as a prognostic tool, and comparisons of its performance with the sputum 6GS, are likely
underpowered and thus not definitive. We cannot exclude that integration of gene signatures
with cell counts could provide superior performance by better reflecting the activation status

of key immune pathways, and this should be explored in future studies.

In conclusion, the sputum 6GS can predict future exacerbation phenotype in moderate-to-
severe asthma, demonstrating the prognostic potential of gene signatures. We also conclude
that AZM exerts a therapeutic mechanism independent of the inflammatory factors reported
by the sputum 6GS, and that the 6GS may still retain use in identifying a subset of patients

who may experience frequent severe exacerbations despite AZM therapy.
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Tables

Table 1. Subject Characteristics

All Placebo Group Azithromycin Group
N 142 73 69
Age” 60.62 (49.79, 69.14) | 60.01 (48.78,67.80) | 62.21(53.21, 69.19)
Sex M/F 65/77 33/40 32/37
Atopy* 110 /139 (79.1%) 57/70 (81.4%) 53/69 (76.8%)
Ex-smoker* 50 (35.2%) 26 (35.6%) 24 (34.8%)
Pack years” 9.15(1.30, 24.0) 9.2 (1.4, 25.0) 9.15 (1.3, 22.0)
ACQ score” 1.58 (1.0, 2.17) 1.67 (1.17, 2.33) 1.33 (1.0, 2.17)
GINA step 4 120 (84.5%) 61 (83.6%) 59 (85.5%)

Severe asthma®

69 (48.6%)

34 (46.6%)

35 (50.7%)

Pre-b2 FEV,% *

73.85 (18.84)

73.23 (18.93)

74.52 (18.85)

Pre-b2 FVC% "

84.07 (14.62)

82.70 (14.57)

85.55 (14.64)

Pre-b2 FEV,/FVC% "

67.73 (11.19)

68.15 (10.92)

67.28 (11.54)

ICS dose (BDP mcg/day)

1000 (800, 2000)

1000 (800, 2000)

1280 (800, 2000)

FENO ppb”

25.80 (15.58, 47.45 )
(n=68)

31.65 (18.30, 53.0)
(n=34)

21.03 (14.30, 34.70)
(n=34)

Blood eosinophils (x 10°/L) ¢

0.29 (0.2, 0.4)

0.3 (0.2, 0.4)

0.2 (0.12, 0.4)

Sputum cell counts

Sputum cell viability®

72.1 (55.4, 84.0)

78.0 (61.0, 86.1)

68.2 (53.3, 82.7)

Total cell count (x 10%/ml)“

4.55 (2.61, 7.56)
(n=139)

4.86 (2.70, 9.27)
(n=73)

4.23(2.25, 6.75)
(n=66)

Neutrophils % °

32.5(14.0, 54.0)

33.5(18.0, 55.0)

31.75 (12.50, 52.75)

Eosinophils % °

1.75 (0.50, 9.50)

2.0 (0.50, 6.25)

1.63 (0.25, 11.50)

Macrophages % °

50.50 (31.60, 69.0)

51.0 (31.75, 68.75)

45.63 (31.60, 69.0)

Lymphocytes % °

0.75 (0.25, 1.75)

0.75 (0.25, 1.50)

0.75 (0.25, 2.0)

Columnar epithelial % °

2.50 (1.0, 5.75)

2.50(0.75, 4.75)

2.38(1.25, 6.50)

C2R stained eosinophils % °

2.25 (0.50, 9.50)

2.50 (0.75, 9.25)

2.0 (0.50, 10.0)

Sputum phenotype

Eosinophilic* 58 (41.7%) 32 (43.8%) 26 (39.4%)
Neutrophilic* 21 (15.1%) 13(17.8%) 8(12.1%)
Paucigranulocytic® 55 (39.6%) 24 (32.9%) 31 (47.0%)
Mixed® 5 (3.6%) 4 (5.5%) 1(1.5%)
Exacerbations/person-year

during AMAZES trial

Total 1.61 2.11 1.07°
Severe 0.77 1.04 048~
Moderate 0.84 1.07 0.59~

“Median (g1,93); ¥(n(%); “Mean (SD); “Negative binomial regression p<0.03.
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Table II. AUC for each predictive marker by study population, exacerbation severity

and exacerbation frequency status.

6GS Sputum Sputum Sputum PBE 6GS FENO
eosinophils | neutrophils | Eosinophils (FENO)“
&
Neutrophils
N=139 N=139 N=139 N=139 N=139 N=67 N=67
AUC=0.696 | AUC=0.630 AUC=0.633* | AUC=0.642 AUC=0.596* | AUC=0.691 | AUC=0.635
o | P<0.0001 P=0.008 P=0.005 P=0.003 P=0.058 P=0.004 P=0.056
e | &
Rl A
2| A
2
o
e AUC=0.664 | AUC=0.606 AUC=0.608 AUC=0.621 AUC=0.566* | AUC=0.647 | AUC=0.670
o ;.' P=0.001 P=0.034 P=0.029 P=0.016 P=0.181 P=0.029 P=0.010
O
SIS
Al
AUC=0.681 | AUC=0.579 AUC=0.549* AUC=0.588 AUC=0.503" | AUC=0.736 | AUC=0.618
”n ‘2 P<0.0001 P=0.126 P=0.348 P=0.083 P=0.957 P<0.0001 P=0.094
S| 3
& | A
g
® AUC=0.761 | AUC=0.703 | AUC=0.631* | AUC=0.684* | AUC=0.567° | AUC=0.837 | AUC=0.756
$ ;.' P<0.0001 P=0.002 P=0.054 P=0.012 P=0.281 P<0.0001 P<0.0001
o -
q>_) o
172 N
Al

Mp<0.05 vs 6GS (FENO subpopulation); §p<O.01 vs 6GS (FENO subpopulation)

Qvalues calculated in subpopulation where FENO measurement was made *p<0.05 vs 6GS; ¥p<O.01 vs 6GS;
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Table II1. Analysis of diagnostic value of the sputum 6GS for asthma airway

inflammatory phenotype

Marker * Logistic Regression
Constant Coefficient Model P AUC
value (95%Cl)
EA vs NEA ALPL 3.016208 0.1233148 <0.0001 0.7684
N=139 CLC -0.0929966 (0.6898,
CPA3 -0.3150406 0.8469)
CXCR2 0.0323884 P<0.0001
DNASE1L3 -0.0486184
IL1B 0.1429728
EA vs NA ALPL 3.645667 1.529648 <0.0001 0.9294
N=79 CLC 0.0586264 (0.8637,
CPA3 -0.0971249 0.9951)
CXCR2 -0.298909 P<0.0001
DNASE1L3 -0.9454183
IL1B 0.5770762
EA vs PGA ALPL 4.249046 0.0063321 0.0002 0.7636
N=118 CLC -0.1013124 (0.6775,
CPA3 -0.3867286 0.8498)
CXCR2 -0.0325417 P<0.0001
DNASE1L3 0.0516468
IL1B 0.0999352
NA vs NNA ALPL -2.034031 -0.8416046 <0.0001 0.8948
N=139 CLC -0.2829233 (0.8294,
CPA3 0.0170649 0.9603)
CXCR2 -0.1026321 P<0.0001
DNASE1L3 0.766542
IL1B -0.3135194
NA vs PGA ALPL 1.820331 -0.5331606 <0.0001 0.8804
N=81 CLC -0.4059778 (0.8055,
CPA3 -0.0610565 0.9553)
CXCR2 -0.2789399 P<0.0001
DNASE1L3 0.565322
IL1B -0.2033842
PGA vs ALPL -4.316154 0.0509944 0.0004 0.7396
Granulocytic | CLC 0.1325146 (0.6561,
N=139 CPA3 0.2796407 0.5232)
CXCR2 0.1651778 P<0.0001
DNASE1L3 -0.1245273
IL1B -0.0157521

*Markers are normalized to beta-actin mRNA expression (ACT)
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Figures

Figure 1. ROC analysis of diagnostic performance of 6GS, sputum eosinophils and/or
neutrophils and PBE for predicting asthma exacerbation phenotypes. (double column,

color)

Figure 2. AZM treatment does not alter sputum 6GS expression or prognostic capacity

compared to placebo. (double column)

Figure 3. Sputum 6 gene signature expression in eosinophilic and neutrophilic subtypes

of asthma and prediction of airway inflammatory phenotype. (double column, color)
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Figure legends

Figure 1. ROC analysis of diagnostic performance of 6GS, sputum eosinophils and/or
neutrophils and PBE for predicting asthma exacerbation phenotypes. ROC curve
comparison performed in both placebo- and AZM-treated patients (combined) enrolled in the
AMAZES trial. Biomarkers examined: the sputum 6GS (black line), combined sputum
eosinophils and neutrophils (pink line), sputum eosinophils (blue line), sputum neutrophils
(red line) and PBE (green line). Comparisons shown are non-exacerbator vs exacerbator
(severe exacerbations only) (A), infrequent exacerbator vs frequent exacerbator (severe
exacerbations only) (B), non-exacerbator vs exacerbator (sum moderate and severe
exacerbations) (C) and infrequent exacerbator vs frequent exacerbator (sum moderate and
severe exacerbations) (D). ROC analysis was also performed to compare prognostic capacity
of sputum 6GS, OCS courses (prior 12 months) and 6GS adjusted for prior OCS courses to

identify frequent vs non-frequent severe exacerbators (E). (* =P <0.05, ** =P <0.01).

Figure 2. AZM treatment does not alter sputum 6GS expression or prognostic capacity
compared to placebo. qPCR was performed on cDNA generated from raw sputum samples
collected during screening visits (visit 1/2) and a visit at end of the treatment period (week
48, visit 10) for the AMAZES trial. CLC (A), CPA3 (B), DNASEIL3 (C), IL1B (D), CXCR2
(E) and ALPL (F) data are reported as relative abundance normalized to expression of the
housekeeping gene B-ACTIN (** =P <0.01, *** =P <0.001, Mann-Whitney). ROC curve
comparison for the sputum 6GS in placebo arm (black line) compared with sputum 6GS in
AZM arm (grey line). Comparisons shown are non-exacerbator vs exacerbator (severe
exacerbations only) (G), infrequent exacerbator vs frequent exacerbator (severe

exacerbations only) (H), non-exacerbator vs exacerbator (sum moderate and severe
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exacerbations) (I) and infrequent exacerbator vs frequent exacerbator (sum moderate and

severe exacerbations) (J).

Figure 3. Sputum 6 gene signature expression in eosinophilic and neutrophilic subtypes
of asthma and prediction of airway inflammatory phenotype. qPCR was performed on
cDNA generated from raw sputum samples collected during screening visits for the
AMAZES trial. CLC, CPA3, DNASE1L3, CXCR2, IL1B and ALPL data are reported as
relative abundance normalized to expression of the housekeeping gene B-ACTIN. A) patients
are separated into non-eosinophilic asthma (sputum eosinophils < 3%) and eosinophilic
asthma (= 3%) groups. B) patients are separated into non-neutrophilic asthma (sputum
neutrophils < 61%) and neutrophilic asthma (= 61%) groups. Data are expressed as median
value with interquartile range. (* =P <0.05, ** =P <0.01, *** =P <0.001, Mann-
Whitney). ROC curve comparison for the sputum 6GS (black line) compared with PBE
(green line, panel C) and compared with FENO (pink line, panel D) (patient subgroup where
FENO data was available). 6GS was better at distinguishing the EA from NA phenotypes

than PBE or FENO (* =P <0.05, ** =P <0.01).
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A sputum 6 gene signature predicts future exacerbations of poorly controlled asthma.
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SUPPLEMENTAL METHODS

Trial Design

The AMAZES trial was a multicentre, randomized, double-blind, placebo controlled parallel
group trial that was designed to evaluate the efficacy and safety of oral azithromycin 500mg,
three times weekly for 48 weeks, as add-on therapy in adults with persistent symptomatic

asthma despite maintenance controller therapy with ICS/LABD. 420 patients were allocated
to azithromycin or identical-looking placebo in a 1:1 ratio centrally using concealed random
allocation from a computer-generated random numbers table with permuted blocks of 4 or 6

and stratification for centre and past smoking.
Trial Oversight

A national steering committee of investigators designed the trial and was responsible for its
conduct, analysis, interpretation, and reporting. Stenlake Compounding Pharmacy (Bondi

Junction, NSW, Australia) prepared the study drug and matching placebo. The trial was
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funded by the Australian Government’s National Health and Medical Research Council and
there was no commercial input into any aspect of the trial. The trial was registered (ANZCTR
No 12609000197235) and approved by institutional ethics committees. All patients provided

written informed consent.
Patients

Patients were eligible if they had asthma defined as a compatible history and objective
evidence of variable airflow obstruction from bronchodilator response (n=307,74.5%), airway
hyperresponsiveness (n=129,56%) 2, or increased peak flow variability (n=73, 44.7%); were
currently symptomatic with at least partial loss of asthma control (asthma control score
(ACQ6)>0.74) * despite treatment with maintenance ICS/LABD; were clinically stable with
no recent exacerbation, infection or change in maintenance medication for at least 4 weeks
prior to study entry; and were non-smokers (exhaled carbon monoxide < 10ppm). Exsmokers
with a >10pack year smoking history underwent gas transfer testing and were excluded if

their carbon monoxide gas transfer coefficient was <65% predicted.
Procedures

After a screening visit patients entered a 2 week run-in period. Those with optimised asthma
treatment, adherence to >80% of doses and who remained stable with change in ACQ6 of
<0.5 were randomized. Patients were treated for 48 weeks and attended the clinic for
assessment at weeks 6,12,24,36,48,52. Study visits assessed symptoms, medication use,
asthma exacerbations, adherence, adverse events, and spirometry. Telephone assessments
were conducted at weeks 18, 30, and 42. Induced sputurn4 was performed before
randomization and at the end of treatment visit (week 48). Adherence was assessed by tablet
count returns at each visit. For safety monitoring, we assessed liver function tests and an

electrocardiogram at screening, after 6 weeks of treatment, and at the end of treatment. QTc¢
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prolongation >480mSec resulted in withdrawal from the trial. Microbiological assessments
involved sputum culture for recognised pulmonary pathogens (5 sites), and throat swab and

nose swabs (2 sites) at randomisation and end of treatment.
Outcomes

Our primary outcome was the rate of severe asthma exacerbations over 48 weeks™ °. Severe
exacerbations were worsening of asthma symptoms requiring >3 days of systemic
corticosteroid treatment >10mg/day, or an asthma-specific hospitalization or emergency
department visit requiring systemic corticosteroids. Exacerbations were captured at all visits
using structured interviewing. Secondary efficacy variables were ACQ6, asthma-related

quality of life (AQLQ’, lung function, and induced sputum cell counts.
Sputum induction and analysis

Airflow limitation was assessed using spirometry (Medgraphics, CPFS/D™ usb Spirometer,
BreezeSuite v7.1, Saint Paul, USA). Sputum induction with hypertonic saline (4.5%) was
performed in participants whose FEV, was >1L using our previously described methods®. In
those with FEV, <IL, 0.9% saline was used. For gene expression, Buffer RLT (Qiagen,
Hilden, Germany) was immediately added to 100 ¢ L of selected sputum and stored at -80°C
until RNA extraction. For inflammatory cell counts, selected sputum was dispersed using
dithiothreitol, and total cell count and viability were performed. Cytospins were prepared,
stained (May-Grunwald—Giemsa) and a differential cell count obtained from 400 non-

squamous cells.

Gene expression analysis

Sputum gene expression of CLC, CPA3, DNASEIL3, ALPL, CXCR2, IL1B was performed as

previously described’ (see Online Repository). Briefly, sputum RNA was extracted using the
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Qiagen RNeasy Mini Kit, quantified, reverse-transcribed to cDNA and used to detect gene
expression using standard Tagman real-time qPCR methods (Applied Biosystems, Foster
City, USA). Statistical analysis of diagnostic ability was performed on the change in cycle
threshold (» Ct) between the target gene and housekeeping ¢ -actin. For relative gene

expression levels, data were log transformed (2™ ).
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SUPPLEMENTAL RESULTS

Supplemental Table E1. Analysis of prognostic value of the sputum 6GS for discriminating
patients who experience none or some severe asthma exacerbations in the following 48 weeks

Marker * Logistic Regression
Constant Coefficient Model P AUC
value
Individual

ALPL 0.6821072 -0.1729284 0.0888 0.6132
- P=0.026
§ CLC 1.157094 -0.1759621 0.0179 0.6391
5 P=0.003
§ CPA3 1.238786 -0.1685756 0.0379 0.6152
% P=0.016
v CXCR2 -0.3657592 -0.0095939 0.6181 0.5490
o P=0.354
°w: DNASE1L3 1.33276 -0.1507057 0.1685 0.5893
& P=0.074
o IL1B -0.1105435 -0.1005466 0.3594 0.5652
q P=0.204
S Combination
v | 6GS ALPL 1.107549 -0.2649145 0.0522 0.6889
g CLC -0.1413991 P<0.0001
i} CPA3 -0.1169522

CXCR2 0.2247225

DNASE1L3 0.1312494

IL1B -0.049104

*Markers are normalized to beta-actin mRNA expression (¢ CT)
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Supplemental Table E2. Analysis of diagnostic value of the sputum 6GS for discriminating
patients who experience infrequent (< 2) or frequent (¢ 2) severe asthma exacerbations in the

following 48 weeks

Marker * Logistic Regression
Constant Coefficient Model P AUC
value
Individual
ALPL -0.4141298 -0.1112192 0.0210 0.6780
P=0.002

- CLC 1.133079 -0.2618302 0.0004 0.7444
E;; P<0.0001
a CPA3 1.799899 -0.3078733 0.0002 0.7429
5 P<0.0001
> CXCR2 -0.8829863 -0.0442772 0.0323 0.6480
£ P=0.016
%\‘: DNASE1L3 2.309992 -0.2999175 0.0021 0.7270
3‘ P<0.0001
~ IL1B -0.9561744 -0.0529377 0.0320 0.6448
E P=0.013
& | Combination
E 6GS ALPL 1.653505 -0.0366669 0.0091 0.7613
o CLC -0.1419366 P<0.0001
2 CPA3 -0.2420405

CXCR2 0.0328808

DNASE1L3 0.0800461

IL1B -0.0380849

*Markers are normalized to beta-actin mRNA expression (¢ CT)




86
87
88

89

Supplemental Table E3. Analysis of prognostic value of the sputum 6GS for discriminating

patients who experience none or some total (moderate and severe) asthma exacerbations in the
following 48 weeks

Marker * Logistic Regression
Constant Coefficient Model P AUC
value
Individual
ALPL 2.021271 -0.1683247 0.0014 0.6741
P<0.0001

'g CLC 1.116 -0.0229152 0.0096 0.6332
2 P=0.006
g CPA3 0.9125818 -0.00059 0.0102 0.6172
§ P=0.016
o CXCR2 0.9289623 -0.0041664 0.0102 0.6361
£ P=0.004
:\Z DNASE1L3 0.5852789 0.0276092 0.0098 0.6404
:; P=0.003
1 IL1B 0.9864461 -0.0257423 0.0099 0.6381
S P=0.003
S | Combination
&‘:’ 6GS ALPL 0.9350901 -0.4127687 0.0115 0.7114
3 CLC -00.0361907 P<0.0001
2 CPA3 -.0101578

CXCR2 0.2094708

DNASE1L3 0.1425817

IL1B 0.1086857

*Markers are normalized to beta-actin mRNA expression (¢ CT)
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Supplemental Table E4. Analysis of diagnostic value of the sputum 6GS for discriminating

patients who experience infrequent or frequent total (moderate and severe) asthma

exacerbations in the following 48 weeks

Marker * Logistic Regression
Constant Coefficient Model P AUC
value
Individual
- ALPL .7881897 -0.1265727 0.0148 0.6433
S P=0.004
S CLC 1.152437 -0.1299279 0.0060 0.6555
9 P=0.002
2 CPA3 1.413362 -0.1452072 0.0054 0.6530
I P=0.002
2 CXCR2 0.3325545 -0.0675409 0.0332 0.6219
g P=0.015
& DNASE1L3 1.606988 -0.1402179 0.0145 0.6453
£ P=0.003
N IL1B 0.2776118 -0.0991223 0.0264 0.6292
@ P=0.007
g‘ Combination
< | 6GS ALPL 1.462895 -0.0890073 0.0876 0.6649
i cLC -0.068176 P=0.001
g CPA3 -0.1237933
' CXCR2 0.039212
z DNASE1L3 0.074877
IL1B -0.0496472

*Markers are normalized to beta-actin mRNA expression (¢ CT)
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Supplemental Table ES. AUC for each predictive marker by study population, exacerbation

severity and exacerbation frequency status.

6GS Sputum Sputum PBE 6GS FENO
eosinophils neutrophils (FENO)®
AUC=0.711 | AUC=0.505 AUC=0.582 | AUC=0.602 | AUC=0.738 AUC=480
w | © |P=0.003 P=0.947 P=0.263 P=0.165 P=0.026 P=0.846
c | & |[N=73 N=73 N=73 N=73 N=34 N=34
. —
-
[4°] °
o]
—
8
< AUC=0.706 | AUC=0.575 AUC=0.554 | AUC=0.606 | AUC=0.561 AUC=0.550
o g‘ P=0.001 P=0.269 P=0.428 P=0.110 P=0.576 P=0.627
S| g |N=73 N=73 N=73 N=73 N=34 N=34
o
|_
o N
_Q [ ]
8
= AUC=0.676 | AUC=0.547 AUC=0.593 | AUC=0.558 | AUC=0.712 AUC=0.535
@ | 2 | P=0.005 P=0.499 P=0.181 P=0.397 P=0.020 P=0.741
o) O | N=73 N=73 N=73 N=73 N=34 N=34
-+~ —
[5°]
e .
—
8
® AUC=0.776 | AUC=0.701 AUC=0.563* | AUC=0.628 | AUC=0.810 AUC=0.634
$ g‘ P<0.0001 | P=0.004 P=0.436 P=0.091 P<0.0001 P=0.213
g | 5 |N=73 N=73 N=73 N=73 N=34 N=34
3| ~
m L]
AUC=0.643 | AUC=0.544 AUC=0.479 | AUC=0.524 | AUC=0. 640 AUC=0.529
w | © | P=0.038 p=0.540 p=0.776 p=0.740 p=0.160 p=0.783
—
S| o | N=66 N=66 N=66 N=66 N=33 N=33
s —
[4°]
_Q L]
—
8
2 | o | AUC=0.610 | AUC=0.431 AUC=0.470 | AUC=0.511 | AUC=0.609 AUC=0.565
%‘; & | P=0.150 P=0.386 P=0.698 P=0.891 P=0.348 P=0.536
£ | 5 | N=66 N=66 N=66 N=66 N=33 N=33
= ~
E .
< AUC=0.741 AUC=0.534* AUC=0.469 * | AUC=0.592 | AUC=0.804 AUC=0.583
¢ | © |P<0.0001 | P=0.669 P=0.675 P=0.229 P<0.0001 s
2 O | N=66 N=66 N=66 N=33 P=0.444
S N=33
—
(]
3
% | o |AUC=0.750 | AUC=0.467* AUC=0.293 * | AUC=0.678 | AUC=0.767 AUC=0.600
o | & |P=0.013 P=0.807 P=0.055 P=0.081 P=0.125 P=0.394
—
o | 5 |N=66 N=66 N=66 N=66 N=33 N=33
g o

" values calculated in subpopulation where FENO measurement was made, *p<0.05 vs 6GS; ¥p<O.01 vs 6GS;
§p<O.01 vs 6GS (FENO subpopulation)
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Supplemental Table E6. Analysis of prognostic value of the sputum 6GS for discriminating

patients who experience none or some severe asthma exacerbations in following 48 weeks

Marker * Logistic Regression
Constant Coefficient Model P AUC

value (95%Cl)
- Individual
S ALPL 1.174711 -0.2524459 0.0335 0.6552,
_‘§ p=0.017
9 CLC 1.311412 -0.1935234 0.0293 0.6481,
= p=0.021
o CPA3 1.121902 -0.1565537 0.1088 0.5862,
g p=0.204
;\2 CXCR2 0.0996914 -0.0977394 0.3993 0.5846,
N p=0.217
3»1 DNASE1L3 2.178457 -0.2240271 0.1038 0.6042,
0 p=0.122
5 IL1B 0.1822344 -0.1986743 0.1491 0.5799,
E p=0.259
IZI Combination
4 | 6GS ALPL 2.553787 -0.2441983 0.2311 0.6763
3 CLC -0.1503987 P=0.005
gn CPA3 -0.0236053
2 CXCR2 0.0817315
& DNASE1L3 -0.0199114
e IL1B -0.0210936

Individual
0 ALPL -0.2789161 -0.0735923 0.5923 0.5184,
8 p=0.813
2 cLC 0.7462753 -0.1546867 0.1193 0.5841
S p=0.244
] CPA3 1.087588 -0.182063 0.0805 0.6190,
g p=0.088
§ CXCR2 -1.351341 0.1113008 0.4124 0.5754,
< p=0.346
< DNASE1L3 | 0.2451273 -0.0881535 0.4917 0.5368,
0 p=0.622
g IL1B -0.7417235 -0.0056191 0.9669 0.5029,
N p=0.971
a Combination
2 | 6GS ALPL -0.2663717 -0.5786811 0.0966 0.7447
g CLC -0.0886016 P<0.0001
o CPA3 -0.3606021
; CXCR2 0.6540632
D DNASE1L3 _%‘g%‘;‘;ggs
IL1B '

*Markers are normalized to beta-actin mRNA expression (¢ CT)

10
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Supplemental Table E7. Analysis of diagnostic value of the sputum 6GS for discriminating

patients who experience infrequent (< 2) or frequent (¢ 2) severe asthma exacerbations in

following 48 weeks

Marker * Logistic Regression
Constant Coefficient Model P AUC
value (95%Cl)
Individual

o ALPL -0.665708 -0.0708267 0.5671 0.5747,
g p=0.342
s CLC 1.79629 -0.3441432 0.0017 0.7434,
§ p<0.0001
g CPA3 2.70536 -0.4086174 0.0009 0.7354,
u\‘g p<0.0001
N CXCR2 -0.879162 -0.0450079 0.7307 0.5242,
N p=0.753
g DNASE1L3 2.292987 -0.2984015 0.0615 0.6525,
§ p=0.039
= IL1B -1.010963 -0.0347323 0.8202 0.4828,
e p=0.844
Z. Combination
2 6GS ALPL 1.910656 0.000224 0.0305 0.7758
g cLC -0.2322196 P<0.0001
I CPA3 -0.4001086
g CXCR2 -0.0767063
= DNASE1L3 0.2721843

IL1B -0.0170972

Individual

ALPL -0.8723939 -0.2375642 0.2961 0.5714
) P=0.571
% CLC -1.152898 -0.1256578 0.4212 0.5132
@ P=0.907
e CPA3 -0.78702 -0.1579249 0.3320 0.6032
a?.; P=0.329
= CXCR2 -2.132548 -0.0422384 0.8482 0.4815
£ P=0.907
© DNASE1L3 | 0.9566618 -0.3022422 0.1425 0.6534
3 P=0.111
L IL1B -2.078326 -0.0922804 0.6817 0.5661
8 P=0.531
Z | Combination
§ 6GS ALPL 2.057035 -0.6730842 0.5772 0.7540
=3 CLC 0.0791463 P=0.009
= CPA3 0.2137911
< CXCR2 0.6367583

DNASE1L3 -0.5728786

IL1B -0.0484114

*Markers are normalized to beta-actin mRNA expression (¢ CT)
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Supplemental Table E8. Analysis of prognostic value of the sputum 6GS for discriminating
patients who experience none or some total (moderate and severe) asthma exacerbations in

following 48 weeks

Marker * Logistic Regression
Constant Coefficient Model P AUC
value (95%Cl)

. Individual
£ ALPL 2.744964 -0.2750237 0.0184 0.6896,
§ p=0.015
5 CLC 1.044878 -0.0151497 0.8676 0.5238
g P=0.776
% CPA3 0.9904325 -0.0084182 0.9344 0.4707
s P=0.703
2 CXCR2 1.54365 -0.1171154 0.3326 0.6200
o P=0.125
; DNASE1L3 0.9053008 0.0001218 0.9993 0.5156
S p=0.847
n IL1B 1.433011 -0.1650851 0.2606 0.5925
y P=0.222
IzI Combination
g | 6GS ALPL 1.82736 -0.3766049 0.3862 0.7106
e CLC 0.0077007 P=0.003
3 CPA3 -0.0338994
@ CXCR2 -0.0014933
= DNASE1L3 0.123925

IL1B 0.1294379

Individual

- ALPL 0.1277557 -0.041565 0.7463 0.5025
S p=0.972
2 cLC 0.1613086 -0.0309722 0.7376 0.4975
§ p=0.971
) CPA3 -0.2102336 0.0062969 0.9476 0.5194
E p=0.785
2 CXCR2 -0.7677189 0.1182769 0.3501 0.5794
X P=0.259
9 DNASE1L3 | -0.6843071 0.0470349 0.6959 0.5346
@ P=0.627
§ IL1B -0.3903965 0.0789144 0.5345 0.5456
- P=0.521
© | Combination
% | 6Gs ALPL -0.5183495 | -0.6414888 03576 0.6816
3 CLC -0.0522411 P=0.005
& CPA3 0.0004421
= CXCR2 0.5629461
< DNASE1L3 0.1618661

IL1B 0.0880836

*Markers are normalized to beta-actin mRNA expression (¢ CT)
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109  Supplemental Table E9. Analysis of diagnostic value of the sputum 6GS for discriminating
110  patients who experience infrequent or frequent total (moderate and severe) asthma
111  exacerbations in following 48 weeks

112

Marker * Logistic Regression
Constant Coefficient Model P AUC
value (95%Cl)
Individual

ALPL 1.37584 -0.2187011 0.0495 0.6569
_ P=0.018
£ CcLC 2.287965 -0.255561 0.0042 0.6959
g P=0.002
g CPA3 2.55715 -0.2607424 0.0089 0.6569
g P=0.015
:\E CXCR2 0.9757104 -0.1889486 0.1021 0.6081
g P=0.112
A DNASE1L3 3.415742 -0.2956417 0.0316 0.6404
E P=0.033
o IL1B 0.4134511 -0.1433317 0.2820 0.5548
E P=0.425
'Z' Combination
s | 6GS ALPL 3.8649 -0.1726814 0.0640 0.7057
g CLC -0.1481676 P=0.001
2 CPA3 -0.1704555

CXCR2 -0.1120212

DNASE1L3 0.0449441

IL1B 0.0985971

Individual

ALPL -0.9968258 0.0153026 0.9137 0.5378
:_3 p=0.635
8 CLC -1.157131 0.026261 0.7973 0.5633
< P=0.395
= CPA3 -0.6788128 -0.0210921 0.8409 0.4796
£ P=0.784
PN CXCR2 -1.463457 0.1064686 0.4452 0.5704
a P=0.379
) DNASE1L3 -0.8950519 0.0000905 0.9995 0.4765
> P=0.762
% IL1B -0.7406066 -0.0508403 0.7153 0.5378
© 0.625
Z | Combination
g 6GS ALPL -0.9970808 -0.2584836 0.8283 0.6265
= CLC 0.0914051 P=0.097
= CPA3 -0.0990941
< CXCR2 0.4106918

DNASE1L3 0.0193966

IL1B -0.1623113

*Markers are normalized to beta-actin mRNA expression (¢ CT)
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Supplemental Table E10. Comparison of diagnostic value of sputum 6GS vs PBE & FENO for

asthma airway inflammatory phenotyping

Phenotype 6-Gene Signature PBE P value
6GS vs PBE

EA vs NEA AUC=0.7684 AUC=0.7591 0.858
N=139 P<0.0001 P<0.0001

EA vs NA AUC=0.9294 AUC=0.7159 0.002
N=79 P<0.0001 P=0.001

EA vs PGA AUC=0.7636 AUC=0.7726 0.873
N=118 P<0.0001 P<0.0001

Phenotype 6-Gene Signature FENO P value

6GS vs FENO

EA vs NEA AUC=0.8152 AUC=0.7268 0.242
N=67 P<0.0001 P<0.0001

EA vs NA AUC=0.9569 AUC=0.7615 0.015
N=41 P<0.0001 P=0.001

EA vs PGA AUC=0.8383 AUC=0.7147 0.136
N=55 P<0.0001 P=0.003
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